Cooperative Extension, Sutter-Yuba Counties
University of California
Cooperative Extension, Sutter-Yuba Counties

Posts Tagged: Horticulture CRSP

Connecting with farmers over pineapple postharvest practices

>

At the end of a long year, sometimes it helps to reconnect with what motivates your work.

For Karin Albornoz — a Ph.D. student who works in the Diane Beckles Lab at UC Davis on molecular biology related to tomato postharvest chilling injury — that means getting out into the world to work directly with small-scale farmers.

"I spend so much time in the lab," she said. "Sometimes I spend a whole day in the lab extracting RNA or writing a paper. This reminds me why I am doing this work: to make a real-world impact."

Just over a week ago, she returned from a trip to Uganda where she did exactly that. In partnership with a local organization called Ndibwami Integrated Rescue Project (NIRP), Albornoz shared her expertise with farmers through several hands-on workshops about improving harvest practices and postharvest handling of pineapple, passion fruit and tomatoes. Her work was supported by the Horticulture Innovation Lab, an international agricultural research program led by UC Davis with funding from the U.S. Agency for International Development as part of Feed the Future, the U.S. government's global hunger and food security initiative.

Though Albornoz has worked with rural farmers before, this was her first time working in Africa. 

"Everywhere I looked, things were growing. There were people working in the field, women cooking, and everyone was working with food," she said. "I know there's a lot of stigma – when you talk about Africa, you see people's faces change and they're thinking about things like drought and famine and starving children. But what I saw doesn't fit that stereotype. The challenges they are facing seem to be about not having access to opportunities."

The workshops she led are part of the NIRP organization's efforts to connect farmers with more lucrative markets that pay higher prices for quality produce.


In this 2-minute video, Karin Albornoz visits a pineapple farm, leads a pineapple training and discusses next steps for this project led by NIRP in Uganda. The video clips and photos were taken by Karin while she was working and edited by Hallie Casey for the Horticulture Innovation Lab.


For months, Albornoz has been in contact with NIRP and making plans for the farmer workshops. She prepared postharvest handling manuals for each crop — pineapple, passion fruit and tomato — and asked questions to better understand local resources and the farmers' existing knowledge.

During her 2 weeks in Uganda, she visited farmers' fields and led three full-day workshops. The first workshop for about 50 farmers focused on pineapple — starting with understanding local quality parameters for this fruit, then best practices for harvesting, sanitation, storage and transportation. The second workshop was focused on tomato, with a similar structure, and the third workshop on passion fruit.

During the pineapple workshop, farmers had a chance to measure the fruit's total soluble solids through a refractometer.

Her favorite moment? The farmers' first chance to use a refractometer, to measure soluble solids and learn about sugar levels in the fruit. The refractometers were part of a small toolkit the organization will continue to use.

"They were excited to handle this device and see, in numbers, how the sugar levels of the fruit changed depending on the stage of maturity," she said. "Everyone in the room had a chance to try it."

Karin Albornoz leads a workshop in postharvest handling of pineapple in Uganda.

The experience reinforced her commitment to working with farmers and solving agricultural problems.

"A major mistake is to think that you are going just to train or teach other people because those people are always going to end up teaching you too," Albornoz said. "I made a promise to myself years ago, a personal commitment to working with people in vulnerable situations. I have to do this. Working in agriculture can be a very powerful tool to have an impact in the world."

As Karin's mentor and an Associate Professor in the UC Davis Department of Plant Sciences and Agricultural Experiment Station, Diane Beckles supported Karin's work outside of the lab and views such an experience as important to scholarly development.

"Something magical happens when we teach and engage in outreach," Beckles said. "We often deepen our understanding of what we are teaching, and interacting and engaging with others changes us in that process. It alters how we view and think about science in a way that is positive and rewarding, even though it is not easily quantified."

 More information:

thumbnail: Karin Albornoz leads a workshop in postharvest handling of pineapple in Uganda.
thumbnail: Karin Albornoz leads a workshop in postharvest handling of pineapple in Uganda.

Woman teaching class on pineapple

Posted on Wednesday, December 20, 2017 at 8:47 AM

Explore tools that UC researchers use with smallholder farmers around the world

>

Planted in a corner of the UC Davis campus is a display of technologies and vegetable crops that researchers with the Horticulture Innovation Lab have been using with farmers in Africa, Asia and Central America. Led by UC ANR's Elizabeth Mitcham in the UC Davis Department of Plant Sciences, this program harnesses the agricultural expertise of a network of U.S. university researchers to improve how farmers in developing countries grow fruits and vegetables.

More often than not, the learning goes both ways: Adapting solutions for farmers on another continent can spark ideas that might be useful back home too.

So while the Horticulture Innovation Lab's Demonstration Center was built to showcase international work to campus visitors, you wouldn't be the first to wonder, “Would this technology work on a California farm too?”

Recently a team from UC Cooperative Extension in Fresno County — led by Ruth Dahlquist-Willard, UC Cooperative Extension advisor for small farms in Fresno and Tulare counties — worked with the Horticulture Innovation Lab to learn how to build one of these technologies, to try out with local farmers.

UC Davis and ANR researchers attach clear plastic to a "chimney" frame in Fresno as they work together to build a chimney solar dryer for local growers to try. This low-cost technology was originally designed for Horticulture Innovation Lab researchers to use with farmers in developing countries. From left: Carrie Waterman of UC Davis, Jacob Roberson of UCCE Fresno, UC Davis student Michelle Boutelle, Michael Yang of UCCE Fresno and Angelos Deltsidis of UC Davis. Photo by Archie Jarman/UC Davis

 

Here is a working chimney solar dryer on the UC Davis campus. Grad student Nick Reitz, left, adjusts the plastic cover over trays of sliced mango with help from Archie Jarman, right, of the Horticulture Innovation Lab. Reitz was practicing using the dryer before working with farmers in Ghana.
 

The low-cost technology they built, called a “chimney solar dryer,” combines continuous air flow with solar heat  to dry fresh produce more efficiently than a traditional solar dryer. It was designed by the innovative duo Michael Reid and Jim Thompson, both emeritus specialists with UC Cooperative Extension who have worked on multiple inventions with the Horticulture Innovation Lab. The chimney solar dryer is usually built with basic materials, such as plywood, dark plastic, clear plastic, and food-grade mesh. Read more about how the chimney solar dryer can help farmers add value to crop surplus (PDF).

Here is a quick look at a couple of other technologies that visitors can see at the demonstration center:

 
A low-cost cold room - equipped with a CoolBot, solar panels and household air conditioner - is on display to show UC Davis visitors one way to cool and store fresh fruits and vegetables off the grid. These visitors were participants in the UC Postharvest Technology of Horticultural Crops short course this summer. Photo by Gregory Urquiaga/UC Davis

This solar-powered cold room uses a tool designed by an American farmer, called a CoolBot. In a well-insulated room, a CoolBot can trick a household air conditioner into bringing temperatures down low enough for cool storage of fresh produce. Cooling fruits and vegetables soon after harvest from the field can reduce postharvest losses and extend shelf life. So far teams with the Horticulture Innovation Lab have used the CoolBot with farmers in Tanzania, Zambia, Uganda, Thailand, Cambodia, Bangladesh, India and Honduras.

Read more about how this farmer's invention is reducing postharvest losses around the world.

A delegation of deans from agricultural colleges in Ethiopia listen to a short presentation about building a zero-energy cool chamber (ZECC) with bricks and sand, led by Khush Bakht Aalia, center, and Angelos Deltsidis, right, both of the Horticulture Innovation Lab. Photo by Brenda Dawson/UC Davis

The zero-energy cool chamber (known as ZECC) is a simple structure built from brick and sand that can help cool fresh produce, in conditions where evaporative cooling is effective. By regularly wetting the sand and brick, farmers or even marketers can keep the temperatures low and the humidity high for fresh produce such as leafy greens. Researchers with the Horticulture Innovation Lab have been testing what specific conditions — such as hot, arid climates with easy access to water — make this tool effective for farmers to use to cool their fresh fruits and vegetables.

More information about the ZECC is available from the UC Postharvest Technology Center.

This week the Horticulture Innovation Lab Demonstration Center hosted a media crew from Tajikistan, shown here talking with Angelos Deltsidis, center, about using solar dryers for drying apricots in Tajikistan. Photo by Khush Bakht Aalia for the Horticulture Innovation Lab.

Recent visits to the Horticulture Innovation Lab's demonstration center have come in many shapes and sizes — from people walking by who stopped to read some of the signs, to group activities planned in advance. Recent tours of the center have included a delegation of deans from agricultural colleges in Ethiopia, a television news crew from Tajikistan and high school students from California learning about innovation and human-centered design.

Next time you're on the UC Davis campus, consider dropping by the Horticulture Innovation Lab demonstration center. You can find it on the campus map, or contact the team for a more focused tour.

Maybe it will spark an innovative idea that you can use in your fields?

More information:

Led by UC Davis, the Horticulture Innovation Lab is funded by the U.S. Agency for International Development (USAID) as part of Feed the Future, the U.S. government's global hunger and food security initiative.

Attached Files
UC Davis and ANR researchers attach clear plastic to a "chimney" frame in Fresno as they work together to build a chimney solar dryer for local growers to try. This low-cost technology was originally designed for Horticulture Innovation Lab researchers to use with farmers in developing countries. From left: Carrie Waterman of UC Davis, Jacob Roberson of UCCE Fresno, UC Davis student Michelle Boutelle, Michael Yang of UCCE Fresno and Angelos Deltsidis of UC Davis. Photo by Archie Jarman/UC Davis
Here is a working chimney solar dryer on the UC Davis campus. Grad student Nick Reitz, left, adjusts the plastic cover over trays of sliced mango with help from Archie Jarman, right, of the Horticulture Innovation Lab. Reitz was practicing using the dryer before working with farmers in Ghana.
A low-cost cold room - equipped with a CoolBot, solar panels and household air conditioner - is on display to show UC Davis visitors one way to cool and store fresh fruits and vegetables off the grid. These visitors were participants in the UC Postharvest Technology of Horticultural Crops short course this summer. Photo by Gregory Urquiaga/UC Davis
A delegation of deans from agricultural colleges in Ethiopia listen to a short presentation about building a zero-energy cool chamber (ZECC) with bricks and sand, led by Khush Bakht Aalia, center, and Angelos Deltsidis, right, both of the Horticulture Innovation Lab. Photo by Brenda Dawson/UC Davis
This week the Horticulture Innovation Lab Demonstration Center hosted a media crew from Tajikistan, shown here talking with Angelos Deltsidis, center, about using solar dryers for drying apricots in Tajikistan. Photo by Khush Bakht Aalia for the Horticulture Innovation Lab.
Posted on Wednesday, July 26, 2017 at 7:51 AM

Building trust in food systems – here and in Cambodia

>

What is the role of trust in our food system? Here in the United States, our trust in food is often implicit. We can generally trust that the fruits and vegetables we buy at a grocery store or farmers market are safe to eat — and we are often free to shop without even thinking about that trust.

Between farmers and agricultural scientists too, trust often plays an important role. If you're a farmer, you need to be able to trust that investing your time or money in a new technique or in attending a workshop will indeed improve your business.

But it can be easy to forget that trust is a critical first step in many of these agricultural relationships.

Thort Chuong (now a Fulbright scholar and UC Davis grad student) welcomes us into a nethouse in Cambodia, owned by a farmer who tried it after joining a savings group and hearing about this new way he could grow vegetables without spraying pesticides. Karen LeGrand of UC Davis stands inside, among the leafy green seedlings in the nethouse.

Establishing trust between actors in a food system has been critical for a Horticulture Innovation Lab project in Cambodia, focused on increasing the amount of safe vegetables available to Cambodian consumers.  Project leaders from UC Davis and UC ANR — Glenn YoungJim Hill, Cary Trexler, David Miller and Karen LeGrand — are actually traveling right now in Cambodia to launch a new phase of this project. They are partnering with scientists from Cambodia's Royal University of Agriculture and the University of Battambang. The researchers plan to expand upon their past successes, working together with farmers, marketers, and input suppliers to build trust while building safe vegetable value chains.

One key to their past success was that before introducing farmers to new agricultural technologies, the researchers first connected with farmers socially, by starting community savings groups. In these savings groups, farmers could build relationships and trust, while increasing their own savings and accessing small loans.

This social aspect of the project was the focus of a video made by UC Davis graduate students Thort Chuong, Elyssa Lewis, and Katie Hoeberling. This 3-minute video was a finalist in the World Food Day Video Challenge:

Building trust and resilience in a safe vegetable value chain in Cambodia Interviews for the video were conducted as part of a student thesis and supported by the U.S. Borlaug Graduate Research Fellowship program. 


Though he is now studying at UC Davis as a Fulbright Fellow, Chuong was originally hired to work with farmers on the first phase of this project in Kandal province as an agronomist and field facilitator.

“At first I just wanted to focus on the agronomy part,” he said. “But then I saw the advantages of being a [savings group] member and thought, wow, this is a great thing to do.”

In fact the advantages were so great that on the weekends he returned to his hometown, gathering his neighbors and relatives together to start their own savings groups. Members have a safe way to save money, an easier way to secure small loans, and earn a little interest too.

Farmers in these savings groups were able to save considerable amounts of money and provide loans to each other for things like seeds, field preparation, labor costs, school fees, wedding costs, even in one case a new house — with each member contributing $5-25 per week for a year.

With trust and community established, some of the farmers in the savings groups also decided to try out a new agricultural technology in partnership with the scientists, using nethouses for pest management to avoid spraying pesticides. (In many countries where pesticide information is inaccessible to the average farmer, it is not uncommon for farmers to keep a separate garden to feed their family — in order to avoid eating even their own crops that they are selling to the market.)

The new, safe vegetable value chain they were part of grew and strengthened, as the international team connected these farmers to a marketer who needed to source vegetables grown without pesticides. That marketer then sells those vegetables to consumers in the capital city of Phnom Penh, who were able to trust the vegetables they bought from her are indeed safe to eat.

The Horticulture Innovation Lab is led by a team at UC Davis, with funding from the U.S. Agency for International Development, as part of the U.S. government's global hunger and food security initiative called Feed the Future. Learn more about Horticulture Innovation Lab researchers and their projects in Asia, Africa and Central America.

Savings group members count out Cambodian riel, during an annual ceremony where members are repaid their share of funds (their own savings plus interest), after repaying all of their community loans. After the Horticulture Innovation Lab research was complete in their community, these farmers have continued to expand both their savings groups and their use of new agricultural technologies.

 

As the savings group secretary, Nov Keo tallies up the year's total savings, loans, and interest during the end-of-year ceremony. He was also one of the first farmers to try using a nethouse to grow
As the savings group secretary, Nov Keo tallies up the year's total savings, loans, and interest during the end-of-year ceremony. He was also one of the first farmers to try using a nethouse to grow "safe vegetables" for the Phnom Penh market.

Man pointing to poster-sized balance sheet filled with numbers.

UC Davis researcher Karen LeGrand with Thort Chuong, in front of another farmer's nethouse in Cambodia built after they helped connect scientists, farmers, and marketers with technologies from the Horticulture Innovation Lab.
UC Davis researcher Karen LeGrand with Thort Chuong, in front of another farmer's nethouse in Cambodia built after they helped connect scientists, farmers, and marketers with technologies from the Horticulture Innovation Lab.

Smiling in front of a farm field with net structure

Cheng Sokhim is one of the farmers who started using a nethouse for safer pest control and to earn higher prices for her leafy greens such as kale, Chinese mustard, bok choy and curly leaf lettuce.
Cheng Sokhim is one of the farmers who started using a nethouse for safer pest control and to earn higher prices for her leafy greens such as kale, Chinese mustard, bok choy and curly leaf lettuce.

Woman crouching, smiling among vegetable seedlings in a nethouse structure.

Posted on Tuesday, February 21, 2017 at 8:50 AM

More irrigation for climate-smart farming and food security in Guatemala

>

Connecting 9,000 rural households in Guatemala with improved water management and climate-smart agriculture strategies is the goal of a new project led by a team at UC Davis, to ultimately increase food security and reduce poverty in Guatemala's Western Highlands.

Meagan Terry, left, a UC Davis researcher with the Horticulture Innovation Lab in Guatemala, discusses conservation agriculture with a Guatemalan consultant and a local youth group member. (Photo by Beth Mitcham)
Called MásRiego (“more irrigation”), the project aims to increase farmers' incomes and their use of climate-smart strategies, including drip irrigation, rainwater harvesting, reduced tillage, mulch use and diverse crop rotation. To enable farmers to adopt these new practices, the team will not only provide trainings but also build partnerships to increase farmers' access to needed micro-credit financing and irrigation equipment.

“The opportunity to impact so many farmers' lives on this scale is exciting,” said Beth Mitcham, director of the Horticulture Innovation Lab and a UC Cooperative Extension specialist in the UC Davis Department of Plant Sciences. “We're taking lessons learned from our previous research — in Guatemala, Honduras and Cambodia — and building a team to help more small-scale farmers apply our findings and successfully use these innovative practices.”

The new project is part of the U.S. government's global hunger and food security initiative, Feed the Future. The project represents an additional $3.4 million investment in the UC Davis-led Horticulture Innovation Lab by the U.S. Agency for International Development's mission in Guatemala.

The project's international team also includes representatives from Kansas State University; North Carolina Agricultural and Technical State University; the Centro de Paz Bárbara Ford in Guatemala; Universidad Rafael Landívar in Guatemala; and the Panamerican Agricultural School, Zamorano, in Honduras.

“The learning shared between these three U.S. universities and the universities in Honduras and Guatemala will be enriching for all of the institutions involved,” said Manuel Reyes, research professor at Kansas State University who is part of the team. “I find it satisfying that these academic institutions will be investing intellectually in marginalized groups in Guatemala's Western Highlands — and in turn, learning from them too.”

Helping youth envision a future in agriculture

Miguel Isaias Sanchez has started farming with drip irrigation and a water tower, using information from one of the first MásRiego trainings. (Photo by Beth Mitcham)
The new MásRiego project will focus on helping farmers, particularly women and youth, grow high-value crops on very small plots of land (200 square meters minimum), in the Quiché, Quetzaltenango and Totonicapán departments of Guatemala's Western Highlands.

By partnering with local youth groups and agricultural schools, the team will better prepare students for jobs in commercial agriculture and agricultural extension with knowledge of climate-resilient conservation and water management practices.

“Our local team is training youth as entrepreneurs, to see agriculture as an economic opportunity instead of just back-breaking work,” said Meagan Terry, UC Davis junior specialist who is managing the project in Guatemala for the Horticulture Innovation Lab. “They can envision a future in agriculture, with innovative ways to create value-added products or grow high-value crops for niche markets.”

As rainfall patterns vary with climate change, farmers in this region are expected to face increased competition for water. Practices such as rainwater harvesting, drip irrigation and conservation agriculture will become more necessary for small-scale farmers.

Climate-smart lessons from conservation agriculture, drip irrigation

In previous research, the Horticulture Innovation Lab has found that combining drip irrigation with conservation agriculture practices can successfully grow vegetables on small plots of land, without significant yield reductions. These practices improve soil structure, moisture retention and soil health.

Additionally, women farmers who participated in the Horticulture Innovation Lab studies in Cambodia, Honduras and Guatemala favored using these practices for another important reason: reduced labor in relation to controlling weeds, vegetable bed preparation and manual watering.

“I dream for many women, youth and their families, that their lives will be better off because of 'MasRiego' and the science behind this work,” Reyes said. “As for the research, we are learning how to improve this suite of practices so they can be tailor fitted globally. I am convinced that if this picks up, steep sloping lands can be farmed with the soil quality not being degraded — but even being enriched.”

These lessons, as well as findings from the program's “Advancing Horticulture” report about horticultural sector growth in Central America, lay the foundation for this new project.

A previous version of this article was published by UC Davis News Service and on the Horticulture Innovation Lab blog


Curious about partnering with the Horticulture Innovation Lab? The Horticulture Innovation Lab builds partnerships between agricultural researchers in the United States and researchers in developing countries, to conduct fruit and vegetable research that improves livelihoods in developing countries. The program currently has three research grant opportunities for U.S. researchers: one focused on tomatoes, another on apricots, and a third on integrated crop-livestock systems. 

Posted on Tuesday, August 30, 2016 at 8:02 AM

How one farmer’s invention is reducing postharvest losses around the world

>

In many developing countries, more than half of all fruits and vegetables are never eaten, but instead are lost, damaged or spoiled after harvest. These “postharvest” losses can mean that farmers need to sell their fresh produce as soon as it is harvested for whatever price they can get, before they lose the crops that represent investments of labor, water, and agricultural inputs. Improving how fruits and vegetables are handled after harvest can significantly prolong freshness — and cooling is key.

“The three most important aspects of postharvest handling are: temperature, temperature, temperature,” said Michael Reid, UC Cooperative Extension postharvest specialist who works with the Horticulture Innovation Lab at UC Davis. “In the developing world in particular, affordable cooling technology is mostly absent.”

Cooling can be expensive — even for American farmers 

As a farmer in upstate New York, Ron Khosla knew this problem too well. His vegetable crop was spoiling too quickly, but he could not afford to buy a walk-in cooler for his small farm. So he invented a solution: a small electrical device he called a CoolBot that tricks an air conditioner into getting colder without freezing over, turning a well-insulated room into a cold room at lower costs than refrigeration. 

“I was hoping for a cheap, DIY solution that I could maintain. But mostly I just needed to keep my leafy greens and strawberries cold,” Khosla said. 

The CoolBot tricks an air conditioner into getting even colder, seen here keeping vegetables fresh in Cambodia, as part of a project with the Horticulture Innovation Lab.
One of his farming customers suggested he sell this device to other farmers, so he started a small business called Store It Cold, LLC. 

Khosla's CoolBot invention caught the eye of postharvest researchers, including Reid, who saw it in action on farms in California and decided to try using it in developing countries too.

CoolBot goes global with the Horticulture Innovation Lab

In one of his first projects with the Horticulture Innovation Lab (a program led by UC Davis with funding from the U.S. Agency for International Development), Reid partnered with agricultural scientists from Uganda, Honduras and India to test the CoolBot in their climates. The four scientists also tested different local materials as insulation for each of the cold rooms.

Since that first project, the Horticulture Innovation Lab has tested CoolBots for farmer cold storage in Tanzania, Zambia, Uganda, Thailand, Cambodia, Bangladesh, India and Honduras. 

Jane Ambuko of the University of Nairobi is another Horticulture Innovation Lab partner who has worked with the CoolBot. She received a grant to pilot this technology with mango farmers for a program called the Kenya Feed the Future Innovation Engine. Her project was featured on an NTV Food Friday news segment about the CoolBot earlier this month.

“I see the CoolBot making a whole lot of difference,” Ambuko said during a TEDxNairobi speech. “But for it to make that desired difference we have to make it cost-effective and affordable for the smallholder farmers.”

Adapting, troubleshooting and scaling up

In many places, the most expensive part of a CoolBot-equipped cold room is the structure for the insulated room, but both Reid and Khosla expect foam building materials to become more widely available and affordable.

From left, farmers Pak Ry and Brap Yart carry a bin of sponge gourd and banana leaves into a CoolBot-equipped cold room in Cambodia, to keep the produce fresh before sale. (Horticulture Innovation Lab photo)
Reid has contacted Khosla, the farmer-inventor, to troubleshoot challenges and discuss results from new locations. In places without reliable electricity, Reid has tested options for solar power.

In the meantime, Khosla's small business has been growing — selling to not only farmers, but also florists, micro-brewers, and other artisanal food businesses. Now with six employees, the company has sold more than 27,500 CoolBots in 51 countries.

“I'm thrilled and so grateful to be a part of helping lots of people. Working with USAID has gotten us known in other countries, and I'm looking forward to the day when we have enough in-roads in India and Africa where we can work directly with farmers there,” Khosla said. “People didn't believe the CoolBots worked at first. But now we get the most amazing letters from people whose businesses have doubled or quadrupled. Good postharvest care makes such a difference. Once they try it, then they see.”

A previous version of this article appeared in the newsletter for Feed the Future, the U.S. government's global hunger and food security initiative, and also in the Horticulture Innovation Lab blog.


Event - Sustainable solutions and extending California's agricultural expertise to the world: The UC Global Food Initiative and UC Blum Centers will host a Global Food Summit on Sustainable Solutions, May 5-6 at UC Irvine. Elizabeth Mitcham, director of the Horticulture Innovation Lab and UC Cooperative Extension postharvest pomologist at UC Davis, will be speaking about technology transfer for horticulture-related technologies such as the CoolBot, seed drying beads, UC Davis-designed chimney solar dryer, pest-exclusion nets, and other tools the program adapts to the needs of farmers in developing countries. She will also be on a panel with two other UC Davis-based directors of Feed the Future Innovation Labs (UC Davis leads five Feed the Future Innovation Labs with funding from USAID — more than any other university). More info about this event.

Posted on Wednesday, March 30, 2016 at 8:55 AM

Next 5 stories | Last story

 
E-mail
 
Webmaster Email: mlsearcy@ucanr.edu