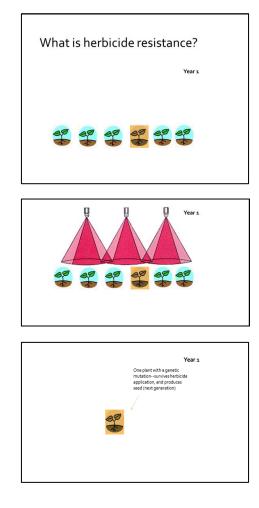


University of California

Agriculture and Natural Resources Cooperative Extension

In This Issue

- How does Herbicide Resistance Evolve? An Illustrated Guide
- Summary of 2016 University of California Rice Variety Trials
- Biological Characteristics of Weedy Rice Compared to Cultivated Rice
- Useful Websites

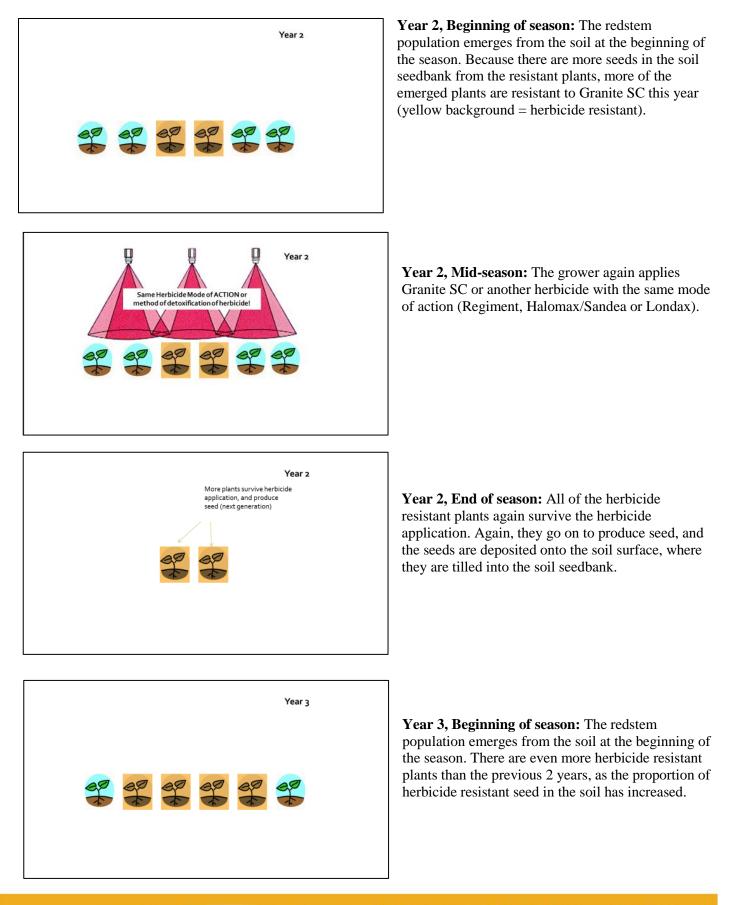


Whitney Brim-DeForest UCCE Farm Advisor Sutter, Yuba, Sacramento and Placer Counties

How Does Herbicide Resistance Evolve? An Illustrated Guide Whitney Brim-DeForest, UCCE Rice Advisor

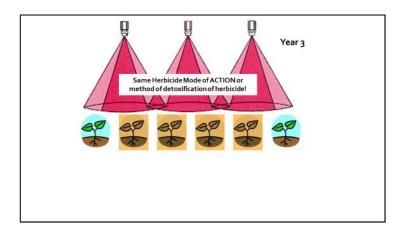
We talk about herbicide resistance all of the time in California rice. But how does it evolve in a field? Understanding how herbicide management selects for resistant populations is an important part of preventing the problem from occuring in your fields.

We have many weed species in CA rice that are confirmed to be herbicide resistant. The major herbicide-resistant species are: late watergrass, early watergrass, barnyardgrass, smallflower umbrella sedge, ricefield bulrush (roughseed), sprangletop, and redstem. For this illustration of how herbicide resistance evolves in a field, we use redstem as our example.

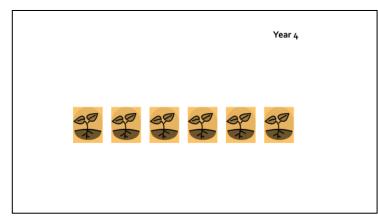


Year 1, Beginning of season: A population of redstem is found in a field and are emerging at the beginning of the season. In this illustration, the plants with the blue background are naturally susceptible to an herbicide (Granite SC). The plants with the yellow background are naturally herbicide resistant to Granite SC. There is nothing that the grower has done at this point to select for resistance. The genes that make the plant resistant are naturally found in the redstem population in the field.

Year 1, Mid-season: The grower applies Granite SC.


Year 1, End of season: One herbicide resistant plant survives. This plant goes on to produce seed, and the seeds are deposited onto the soil surface, where they are tilled into the soil seedbank at the end of the season.

Cooperative Extension Sutter-Yuba Counties ♦ 142A Garden Highway, Yuba City, CA 95991-5512 Office (530) 822-7515 ♦ Fax (530) 673-5368 ♦ <u>http://cesutter.ucanr.edu/</u>


Year 3

More plants survive herbicide application, and produce seed (next generation)

Year 3, Mid-season: For the third year, the grower applies Granite SC or another herbicide with the same mode of action (Regiment, Halomax/Sandea or Londax).

Year 3, End of season: All of the herbicide resistant plants again survive the herbicide application. Again, they go on to produce seed, and the seeds are deposited onto the soil surface, where they are tilled into the soil seedbank.

Year 4, Beginning of season: The redstem population emerges from the soil at the beginning of the season. This year, all of the plants are herbicide resistant, as the soil seedbank contains mostly herbicide resistant redstem seed.

The illustrations above are an example of how herbicide resistance evolves and is selected for in a field. A grower may not notice during the first year or two, as there are just a few plants that survive the herbicide applications. However, if the grower continues to use the same herbicide year after year, or the same herbicide mode of action, eventually, the population of redstem (or another weed species) will shift to become composed of only plants that are herbicide resistant.

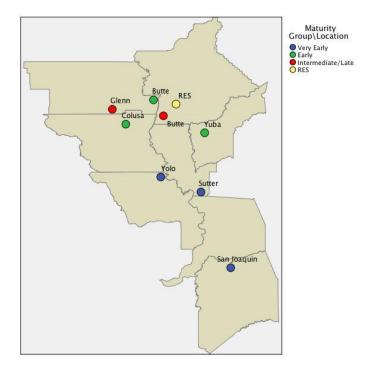
The best way to prevent the development of herbicide resistance is to rotate herbicide modes of action, both between seasons and within seasons. Refer to the UC Herbicide Susceptibility Chart for CA rice when planning an herbicide program (<u>http://rice.ucanr.edu/files/229946.pdf</u>)

Summary of 2016 University of California Rice Variety Trials Luis Espino, UCCE Rice Advisor

Every year, the University of California Cooperative Extension, in cooperation with the Rice Experiment Station (RES), conducts rice variety trials in several locations of the Sacramento and San Joaquin Valleys. Three broad variety categories are included in the trials:

Preliminary breeding lines: those that have been selected by RES breeders to be evaluated on a statewide basis because of promising characteristics observed at the RES. They are tested in two- replication trials.

Advanced breeding lines: these lines are more promising; typically they have been tested first as preliminary. They are tested in four-replication trials. The best of the best may undergo seed increase and be considered for release as new rice varieties after several years of testing.


Commercial varieties: varieties released by the RES and planted in commercial fields.

The entries and varieties included in the trials can be grouped in three maturity groups:

- 1. Very early maturity group (<80 days to 50% heading)
- 2. Early maturity group (81-90 days to 50% heading)
- 3. Intermediate/late maturity group (>90 days to 50% heading)

The trials are conducted at the RES and in grower fields. On-farm trials are planted in the most appropriate location for the maturity group of the entries, taking into consideration weather but also the field variety of the location to avoid early or late harvesting. More than one maturity group is included in the trials so as to compare the performance of preliminary and advanced lines to "standards" such as M-202 or M-206.

Each entry is grown in 200 ft² plots. Cooperating growers manage the trials as part of the field. Plots are harvested using a research plot combine, and yields are converted to lbs/acre at 14% moisture. The complete report (2015 Agronomy Progress Report) is published on the UC Rice On-line website (http://rice.ucanr.edu/).

					Calmochi		
Location	Year	M104	M105	M206	101	S102	L206
	2012	10260	9950	10420	8500	9370	10020
Pigge (PES)	2012	9710	9950 9150	8610	8580 8580	9120	9970
Biggs (RES)	2013	8150	7680	9200	6540	9120 7640	9970 8580
	-						8910
	2015	8580	8150	9350	7940	9520	
	2016		10380	10250	7490	8960	10100
Location Mean		9175	9062	9566	7810	8922	9516
	2012	8990	0500	9320	7500	9470	0570
Cuttor	2012		9590 9940		7500	8470	9570
Sutter	2013	9510		9710	8340	9300	9700
	2014	9510	10380	9710	7780	8770	9440
	2015	9520	10350	9900	7990	9190	9820
	2016	•	11630	11110	9420	10720	9260
Location Mean		9383	10378	9950	8206	9290	9558
	2012	9610	9560	9900	7450	8400	9060
Yolo	2012	9420	9560 9670	9900 9790	7430 7830	8400 8380	9000
1010	2013	9420 9610	10150	9790 9770	7580	8980	9000 8760
							8780 7740
	2015	8150	7210	7490	5560	6940	-
	2016	•	10420	10980	9290	9530	10090
Location Mean		9198	9402	9586	7542	8446	8930
	2012	8460	8340	8990	7880	8180	7570
San Joaquin	2012	8140	8220	8410	7680	7960	8180
San Juaquin	2013	9680	9660	9390	8440	8480	8660
	2014	9650	9260	9390 9970	8750	9240	8400
	2016	•				•	
Location Mean		8983	8870	9190	8188	8465	8203
Loc/Years Mean		9184	9428	9573	7936	8781	9052
Yield % M104		100.0	102.7	104.2	86.4	95.6	98.6
Number of Tests		16	19	19	19	19	19
		10	10	10	10	10	10

Table 8. Grain Yield (Ib/acre @14% moisture) Summary of Very Early Rice Varieties by Location and Year (2012-2016)

		Calhikari					Calmati			
Location	Year	201	S102	M202	M105	M205	M206	M209	202	L206
Biggs (RES)	2012	8680	9500	9770	10250	10530	9980		7990	10510
	2013	8490	8640	7640	7820	9230	8160		5700	8420
	2014	6220	7320	7010	8570	9140	9240		6310	8640
	2015	8580	10050	8570	8610	8720	9620	9490	6790	9360
	2016	7310	9020		10380	10690	10780	10950	7150	11060
Location Mean		7856	8906	8248	9126	9662	9556	10220	6788	9598
Butte	2012	8080	8220	8650	9490	9600	9240		7910	9380
	2013	7840	8650	7870	9640	8960	9020		6450	9390
	2014	8310	8570	8360	9070	9140	9610		7210	9730
	2015	7180	8810	7550	9350	7780	9370	8580	6370	9810
	2016	8080	9480		10060	9640	10400	10220	7850	10050
Location Mean		7898	8746	8108	9522	9024	9528	9400	7158	9672
Colusa	2012	7430	7460	8630	8620	9130	9680		5340	9400
e ended	2013	7840	7220	9140	9750	8930	9660		5970	10250
	2014	7740	8080	8720	9100	9370	9280		6150	9380
	2015	8940	9200	9820	10500	10050	9850	10490	6660	9940
	2016	8590	9050		10390	9730	9960	9600	7850	8670
Location Mean		8108	8202	9078	9672	9442	9686	10045	6394	9528
Yuba	2012	6080	7970	9220	8510	8840	9240		5570	9100
	2013	8040	9280	8950	9330	9650	9750		5750	9590
	2014	7290	7420	8010	8590	9120	8950		5460	9260
	2015	8490	8740	9860	9970	9650	9940	10240	6950	9840
	2016	7310	8300		9110	8430	9090	8760	5310	8670
Location Mean		7442	8342	9010	9102	9138	9394	9500	5808	9292
Loc/Years Mean		7826	8549	8611	9356	9317	9541	9791	6537	9523
Yield % M202		90.9	99.3	100	108.7	108.2	110.8	113.7	75.9	110.6
Number of Tests		20	20	16	20	20	20	8	20	20

Table 14. Grain Yield (lb/acre @14% moisture) Summary of Early Rice Varieties by Location and Year (2012-2016)

PRACTICAL CONNECTED TRUSTED

Location	Year	M205	M402	M202	M-209	L206
Biggs (RES)	2012 2013 2014 2015 2016	11210 9730 10550 9880 9460	10260 9830 10040 8450 9370	11090 8700 8870 8150	9710 9900	11180 9460 10340 9520 10490
Location Mean		10166	9590	9203	9805	10198
Glenn	2012 2013 2014 2015 2016	8220 8400 8910 9420 8490	8260 8970 8910 8710 9850	7660 8270 8510 8560	9620 8520	7680 8870 8870 9910 9290
Location Mean		8688	8940	8250	9070	8924
Sutter	2012 2013 2014 2015	9630 8540 8680	9040 6900 7020	9690 7890 9030	_	9890 8720 9660
Butte	2016	9110	6900		9010	9530
Location Mean		8990	7465	8870	9010	9450
Loc/Years Mean Yield % M202 Number of Tests		9281 105.8 14	8665 98.8 14	8774 100 11	9295 105.9 5	9524 108.5 14

Table 19. G	rain Yield (lb/acre @14% m	noisture) Summary of Intermediate/
La	te Rice Varieties by Location	on and Year (2012-2016)

Biological Characteristics of Weedy Rice Compared to Cultivated Rice Luis Espino, UCCE Rice Advisor

The history of weedy rice in California goes back to the beginnings of rice cultivation in the State. By 1917, weedy rice was considered to be one of the most injurious rice seed pests, together with watergrass and rogue rices. No one knows for sure where this weedy rice came from, but most likely it was brought in with the seed during the time when rice was being experimented with as a possible crop for the Sacramento Valley. With the wide adoption of continuous flooding and certified seed during the 1950s, the weedy rice problem went away, and California had been considered to be "practically free" of weedy rice since then. Then, in 2003, a field was found infested in Glenn County. By 2008, three fields were confirmed infested in two counties. After that, weedy rice finds were a bit of a trickle, with only a handful of fields confirmed infested. The trickle turned into a flood in 2016, when almost 30 fields were found infested in all the major rice producing counties of the Sacramento Valley and in one field in the San Joaquin Valley. So far, five different weedy rice types have been identified.

The California rice industry should be on high alert about this weed. Weedy rice is present in all other rice production areas of the world, and everywhere it is present, it is considered a serious problem. Weedy rice cannot be killed with herbicides, because the herbicides that kill weedy rice also kill cultivated rice. There are several biological characteristics that make weedy rice such a big problem. In California, we know very little about the biological characteristics of the weedy rice types we have, but we can use information generated in the southern US and other places to understand why weedy rice is such a big deal.

Seed shattering: This is one of the main characteristics that make weedy rice weedy. Table 1 shows a comparison of three cultivated rice varieties used in the south during the 1990s and 13 weedy rice types from different southern rice producing states. Shattering on the cultivated varieties was very low, but on the weedy rice types it ranged from moderate to high. Weedy rice types with high shattering tend to be weedier because their seeds are not removed from the field at harvest; seeds stay in the field and germinate the following season, stealing nutrients, water, space and sunlight from the cultivated variety.

Germination and dormancy: Table 1 also shows the germination and dormancy of cultivated and weedy rice seeds right after harvest. Cultivated rice has very high germination and very low dormancy, while weedy rice types are the opposite. What this means is that seeds that shatter have the capacity to remain in the field dormant and viable until the next season, when they can germinate.

Wintering resistance: In South Korea, researchers left weedy and cultivated rice seeds exposed in fallow rice fields during winter for four months, protected by a screen to avoid predation by animals. When they tested germination after the experiment, they found that weedy rice had more than 80% germination, while cultivated rice had only about 5%.

Plant growth: Growth of weedy rice from Arkansas was measured under greenhouse conditions for two years and compared to the cultivar Wells. On average, weedy rice plants were 31 inches in height, while the Wells cultivar was only 23 inches. Weedy rice plants produced 7.5 tillers, while Wells only produced three. Weedy rice plants had an average of 56 root tips, while Wells only had 11.

These are some examples of biological characteristics that explain why weedy rice is so problematic. In California, research is needed to determine which of the weedy rice types we have are more problematic and design strategies to manage them in the field. UCCE will be conducting research this year and will be working with growers to implement practices to prevent and manage weedy rice infestations.

Sources:

Noldin, J. A., J. Chandler, and G. McCauley. 1999. Red rice (*Oryza sativa*) biology. I. Characterization of red rice ecotypes. Weed Technology 13: 12-18.

Sales, M., N. Burgos, V. Shivrain, B. Murphy, and E. Gbur. 2011. Morphological and physiological responses of weedy red rice (*Oryza sativa* L.) and cultivated rice (*O. sativa*) to N supply.

Baek, J., and N. Chung. 2012. Seed wintering and deterioration characteristics between weedy and cultivated rice. Rice. 5:21.

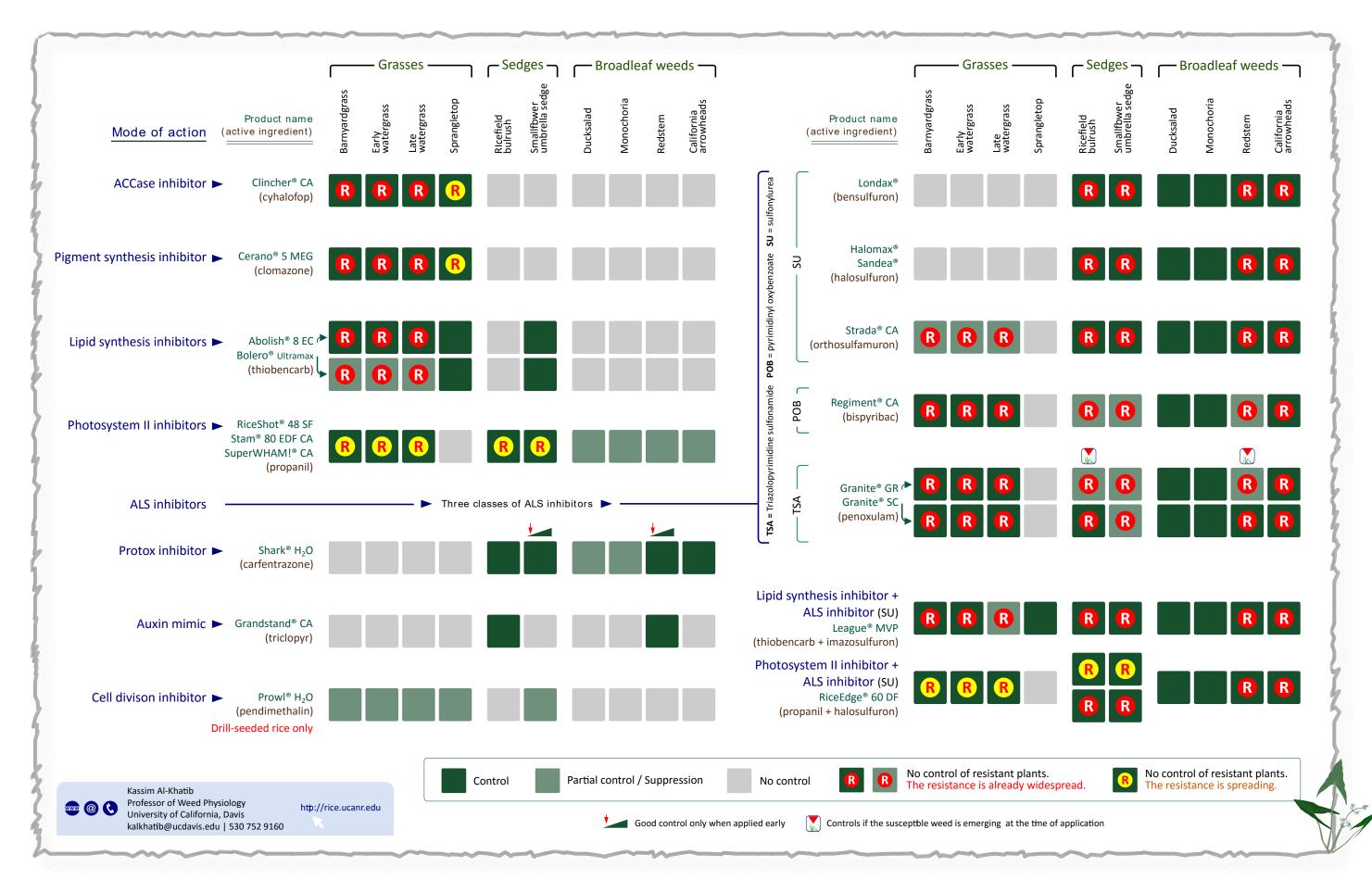
Rice type	Ecotype/cultivar name	Shattering Index ¹	% Germination	% Dormancy
Weedy	AR1	5	5	93
Weedy	AR2	5	2	90
Weedy	AR3	5	8	91
Weedy	AR4	7	3	94
Weedy	LA1	5	0	97
Weedy	LA2	3	17	77
Weedy	LA3	7	0	97
Weedy	LA4	9	2	94
Weedy	LA5	9	3	94
Weedy	TX1	9	0	93
Weedy	TX2	1	5	87
Weedy	TX3	9	0	96
Weedy	TX4	9	3	93
Cultivated	Lemont	1	92	7
Cultivated	Mars	1	95	2
Cultivated	Maybelle	1	95	3

¹Shattering index scale: 1, very low (<1%); 3, low (1-5%); 7, moderately high (26-50%); 9, high (>50%).

Useful Websites

University of California Rice Online: www.rice.ucanr.edu

The UCANR Rice group has put together a website that now provides resources on a variety of topics related to rice production in California. New tools include the Phosphorous Fertilizer Budget and Application Calculator, as well as the Rice Degree Day Model. If you need assistance with the website or more information on how to use the tools, feel free to contact Whitney (wbrimdeforest@ucanr.edu) to arrange a time to go over the website together.



UC Rice Blog: <u>www.ucanr.edu/blogs/riceblog</u>

The UCCE rice advisors post timely information on the blog about important information related to the industry including new pests and pesticides, rice meetings, and anything else we find that we think may be of interest. Subscribe to the blog by signing up here: www.ucanr.edu/blogs/blogcore/subscribe.cfm

ANR NONDISCRIMINATION AND AFFIRMATIVE ACTION POLICY STATEMENT FOR UNIVERSITY OF CALIFORNIA. May, 2015. It is the policy of the University of California (UC) and the UC Division of Agriculture & Natural Resources not to engage in discrimination against or harassment of any person in any of its programs or activities (Complete nondiscrimination policy statement can be found at http://ucanr.edu/sites/anrstaff/files/215244.pdf). Inquiries regarding ANR's nondiscrimination policies may be directed to Linda Marie Manton, Affirmative Action Contact, University of California, Agriculture and Natural Resources, 2801 Second Street, Davis, CA 95618, (530) 750-1318.

2016 CALIFORNIA RICE WEED HERBICIDE SUSCEPTIBILITY CHART

